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What is the first thing that comes 
into mind when somebody says:  
“add threading to your app” ?

poll (1/3)
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For multi-threaded applications, 
where is most of your time spent? 
(with respect to threading)

poll (2/3)
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Would you use a model in which 
synchronization is not needed?

poll (3/3)



@ Lu cT 3 o

rules of engagement
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promise of the talk
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Agenda

1. Threads Considered Harmful 
2. Concurrent Design by Example 
3. C++23 Executors 
4. Performance Topics 
5. Building New Concurrency Abstractions
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1Threads Considered Harmful
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https://youtu.be/_T1XjxXNSCs
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threads

raw threads + synchronization (locks)
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problems with threads

performance 
understandability 

thread safety 
composability
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you are likely to get it wrong!

performance 
understandability 

thread safety 
composability
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a general method

without locks 
without safety issues (*) 
with good performance 

composable & decomposable
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using tasks

task = independent unit of work
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theoretical results

‣ all concurrent algorithms 
‣ safety ensured 
‣ no need for locks 
‣ high efficiency for greedy algorithm 
‣ high speedups 
‣ easy composition & decomposition
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this talk

a lot of code examples

https://github.com/lucteo/cppnow2021-examples
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not included

GPUs 
SIMD 

coroutines
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An introduction to concurrency 
without using locks

2Concurrent Design by Example
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1. hello, concurrent world!
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2. create concurrent work
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interlude

Tracy profiler 
spawning tasks & waiting for them 

task system
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3. delayed continuation
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4. join
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5. fork-join

same thread
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6. concurrent for



@ Lu cT 3 o

7. concurrent reduce
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8. concurrent scan
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9. task graphs
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10. pipeline
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11. serializers
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high-level concurrency abstractions

no more low-level primitives
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3C++23 Executors
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examples

executors 
senders & receivers 
sender algorithms
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4Performance Topics
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targeting throughput

latency can also be a concern 
(but not the main one)
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global pool of worker threads

typically, number of threads == number of cores 
can be adjusted
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key insight: have enough tasks

more tasks than number of cores (at any time) 
all worker threads have work to do 
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small library overhead

library has a small overhead 
tasks should be big enough 

=> good speedup
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serializers can be ok

if we have enough other tasks in the system
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examples
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Extensibility is the key

5Building New 
Concurrency Abstractions
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design is not prescriptive

practice always prompts new cases
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extensibility is the key

able to extend to a variety of cases 
easy o extend 

(somehow easy to understand the internals)
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examples
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6Conclusions
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concurrency without locks



E A S Y
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pushed down to the framework 
level

threading primitives
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high 
performance
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no excuse for 
raw threads and locks
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http://nolocks.org



@ Lu cT 3 o

use proper concurrency design 
in C++, now!



Thank You
@LucT3o 
lucteo.ro nolocks.org
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