

l u c t e o . r o /p r e s / 2 0 2 1 - c p p n o w/

@ Lu cT 3 o

@ Lu cT 3 o

What is the first thing that comes
into mind when somebody says:
“add threading to your app” ?

poll (1/3)

@ Lu cT 3 o

For multi-threaded applications,
where is most of your time spent?
(with respect to threading)

poll (2/3)

@ Lu cT 3 o

Would you use a model in which
synchronization is not needed?

poll (3/3)

@ Lu cT 3 o

rules of engagement

@ Lu cT 3 o

promise of the talk

@ Lu cT 3 o

Agenda

1. Threads Considered Harmful
2. Concurrent Design by Example
3. C++23 Executors
4. Performance Topics
5. Building New Concurrency Abstractions

@ Lu cT 3 o

1Threads Considered Harmful

@ Lu cT 3 o

https://youtu.be/_T1XjxXNSCs

@ Lu cT 3 o

threads

raw threads + synchronization (locks)

@ Lu cT 3 o

problems with threads

performance
understandability

thread safety
composability

@ Lu cT 3 o

you are likely to get it wrong!

performance
understandability

thread safety
composability

@ Lu cT 3 o

a general method

without locks
without safety issues (*)
with good performance

composable & decomposable

@ Lu cT 3 o

using tasks

task = independent unit of work

@ Lu cT 3 o

@ Lu cT 3 o

theoretical results

‣ all concurrent algorithms
‣ safety ensured
‣ no need for locks
‣ high efficiency for greedy algorithm
‣ high speedups
‣ easy composition & decomposition

@ Lu cT 3 o

this talk

a lot of code examples

https://github.com/lucteo/cppnow2021-examples

@ Lu cT 3 o

not included

GPUs
SIMD

coroutines

@ Lu cT 3 o

An introduction to concurrency
without using locks

2Concurrent Design by Example

@ Lu cT 3 o

1. hello, concurrent world!

@ Lu cT 3 o

2. create concurrent work

@ Lu cT 3 o

interlude

Tracy profiler
spawning tasks & waiting for them

task system

@ Lu cT 3 o

3. delayed continuation

@ Lu cT 3 o

4. join

@ Lu cT 3 o

5. fork-join

same thread

@ Lu cT 3 o

6. concurrent for

@ Lu cT 3 o

7. concurrent reduce

@ Lu cT 3 o

8. concurrent scan

@ Lu cT 3 o

9. task graphs

@ Lu cT 3 o

10. pipeline

@ Lu cT 3 o

11. serializers

@ Lu cT 3 o

high-level concurrency abstractions

no more low-level primitives

@ Lu cT 3 o

3C++23 Executors

@ Lu cT 3 o

examples

executors
senders & receivers
sender algorithms

@ Lu cT 3 o

4Performance Topics

@ Lu cT 3 o

targeting throughput

latency can also be a concern
(but not the main one)

@ Lu cT 3 o

global pool of worker threads

typically, number of threads == number of cores
can be adjusted

@ Lu cT 3 o

key insight: have enough tasks

more tasks than number of cores (at any time)
all worker threads have work to do

@ Lu cT 3 o

small library overhead

library has a small overhead
tasks should be big enough

=> good speedup

@ Lu cT 3 o

serializers can be ok

if we have enough other tasks in the system

@ Lu cT 3 o

examples

@ Lu cT 3 o

Extensibility is the key

5Building New
Concurrency Abstractions

@ Lu cT 3 o

design is not prescriptive

practice always prompts new cases

@ Lu cT 3 o

extensibility is the key

able to extend to a variety of cases
easy o extend

(somehow easy to understand the internals)

@ Lu cT 3 o

examples

@ Lu cT 3 o

6Conclusions

@ Lu cT 3 o

concurrency without locks

E A S Y

@ Lu cT 3 o

pushed down to the framework
level

threading primitives

@ Lu cT 3 o

high
performance

@ Lu cT 3 o

no excuse for
raw threads and locks

@ Lu cT 3 o

http://nolocks.org

@ Lu cT 3 o

use proper concurrency design
in C++, now!

Thank You
@LucT3o
lucteo.ro nolocks.org

LU C I A N R A D U T E O D O R E S C U

